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Chapter 1 
Overview 

Pedestrian safety has become a critical concern due to the higher risk of serious injury they 

are prone to in trafc accidents. In the United States, the situation has reached alarming levels, 

with pedestrian fatalities increasing dramatically over the past decade. According to the Governors 

Highway Safety Association (GHSA), pedestrian deaths rose from 4,280 in 2010 to an estimated 

7,508 in 2022, a staggering 77% increase [1]. This surge far outpaces the 25% rise in total trafc 

fatalities during the same period, highlighting a disproportionate risk to pedestrians. The severity 

of this issue is further emphasized by 2022 seeing the highest number of pedestrian deaths since 

1981. On average, 20 pedestrians lose their lives daily while engaging in routine activities such 

as commuting, running errands, or exercising. Intersections, where complex interactions occur 

between various road users, are particularly dangerous. Approximately one-quarter of all trafc 

fatalities and nearly one-half of all trafc injuries in the US occur at intersections [2]. 

To improve trafc safety, one promising approach is to advance the level of autonomy in 

vehicles. This strategy aims to mitigate human-specifc problems such as distracted driving and 

impaired driving. Autonomous vehicles rely heavily on computer vision algorithms applied to data 

from sensors (e.g., RGB cameras, radar, and LiDAR) which are employed to detect and identify 

objects within the driving scene. 

Although these algorithms perform well in detecting larger objects like vehicles, they struggle 

to accurately identify pedestrians and other vulnerable road users. LiDAR provides accurate 3D 

representations of objects, but falls short in semantic interpretation. LiDAR also may not give 

enough points for smaller objects such as pedestrians. Cameras ofer rich semantic details, but 

they have limitations in measuring depth accurately. To overcome the defciencies inherent in 

single-sensor processing, multisensor fusion techniques are being devel- oped. These methods 

integrate data from multiple sensing modalities to form a comprehensive and reliable perception 

system. This fusion aims to combine the depth information of LiDAR with the detailed semantic 

information from the cameras, thus creating a more complete and nuanced under- standing of 

the driving environment [3]. Although progress in single-vehicle perception has been notable, 

it exhibits signifcant shortcomings, notably in its limited sensing range and susceptibility to 

occlusions [4]. Single-vehicle perception performance degrades in the presence of occlusions caused 

by other vehicles or obstacles. Distant objects often provide sparse measurements; for instance, 

they might only cover a few pixels in images or constitute a small number of points in LiDAR point 

clouds. In addressing the challenges of occlusions and long-range issues, the concept of collaborative 

perception (CP) has gained traction within the autonomous driving community. This paradigm 

extends beyond the single vehicle perception system, allowing for a collective approach through 

vehicle-to-everything (V2X) communication technologies. Through connected and autonomous 

vehicles (CAVs) and smart infrastructure, collaborative perception aims to forge a more expansive 

and integrated sensory network, where vehicles, infrastructure, and other entities in the trafc 
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ecosystem share complementary perception data. CP aims to construct a more complete and 

dynamic representation of the trafc environment, enhancing the decision-making capabilities of 

autonomous systems. 

In line with the vision of the US DOT for pedestrian safety, as well as for a more connected 

autonomous vehicle approach, this work focuses on investigating existing pedestrian detection 

challenges, the potential of collaborative or cooperative perception to further improve pedestrian 

detection, and the impact of communication on collaborative perception. In Chapter 2, we discuss 

challenges in pedestrian detection and introduces a collaborative perception approach for improving 

pedestrian detection. Chapter 3 studies the impact of communication on performance of Lidar 

based collaborative perception on state of the art collaborative perception method. In Chapter 

4, we discuss the potential of state-of-the-art vision language models for better understanding the 

pedestrian’s trajectory and behavior around intersections. 



Chapter 2 
Pedestrian Detection Via Collaborative Perception 

2.1 Introduction 

2.1.1 Challenges in Pedestrian Detection 

Autonomous driving technology has made signifcant progress in recent years. However, 

ensuring the safety of pedestrians through accurate detection remains a signifcant challenge. 

Current systems exhibit a notable performance gap in detecting pedestrians and other Vulnerable 

Road Users (VRUs) compared to larger objects such as vehicles. This performance disparity is 

illustrated in Figure 2.1, which shows the average AP values for cars, pedestrians, bicycles, and 

motorcycles for various distance thresholds ranging from 0.5 to 4.0 meters. Average Precision (AP) 

is calculated based on the precision of object detection at various distance thresholds. Precision is 

defned as the ratio of True Positives (TP) to the sum of True Positives and False Positives (FP). 

The defnition of a True Positive varies with the distance threshold (d), which in this evaluation 

is considered at four specifc distances: 0.5m, 1m, 2m, and 4m. A detection is considered a True 

Positive if the center of the predicted bounding box is within the specifed distance d from the 

center of the ground truth bounding box. The AP value reported in the fgure is the average of 

the precision values calculated at these four distance thresholds. This multi-threshold approach 

provides a comprehensive evaluation of the detection model’s performance, balancing the need 

for precise localization (at 0.5m) with more lenient criteria (up to 4m) that may be relevant in 

certain autonomous driving scenarios. The fgure thus illustrates how diferent object classes (cars, 

pedestrians, bicycles, and motorcycles) perform across these varying levels of localization strictness, 

ofering insights into the model’s capabilities and limitations in detecting and accurately positioning 

diferent types of road users. The fnal AP indicated shows the average of AP@{0.5,1,2,4} meters. 

The performance on cars consistently outperforms all other categories across all distance thresholds, 

with the highest AP of about 0.83 at 4.0 meters. Pedestrians show the second-best performance 

among VRUs, but their detection accuracy declines more steeply than cars as the distance threshold 

decreases, i.e., as we demand smaller distance between the estimated object location and ground 

truth location of that object. Motorcycles and bicycles demonstrate lower AP values overall, with 

bicycles showing the poorest detection performance across all thresholds. 

Several factors contribute to the underperformance of the computer vision methods on pedestrians 

and other VRUs. 

• Dataset bias: Existing datasets tend to have more vehicle instances compared to VRUs, 

skewing detection algorithms towards larger objects. This imbalance results in models 

that are better trained to recognize and localize vehicles, while underperforming on VRUs. 

Creating more balanced datasets that accurately represent the diversity and frequency of 

VRUs in real-world trafc scenarios is important for improving detection algorithms. 

3 
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4 2.1. INTRODUCTION 

Figure 2.1: Detection performance comparison across object classes. Average Precision (AP) of 

top 5 models in the nuScenes [3] Vision track challenge as a function of detection distance threshold 

(as of February 2024). 

• Physical characteristics: Pedestrians and other VRUs present unique challenges due to 

their smaller size, which leads to fewer representative pixels in the images and increased 

susceptibility to occlusion. This makes it difcult for current detection systems to accurately 

identify and track VRUs, especially in cluttered urban environments. Developing algorithms 

that can better handle small-scale objects and partial occlusions is essential for improving 

VRU detection. 

• Movement patterns: VRUs exhibit less predictable movement compared to vehicles, which 

typically follow established trafc rules and road layouts. This unpredictability makes 

it challenging for current systems to anticipate and track VRU movements accurately. 

Improving trajectory prediction models and incorporating more sophisticated behavior 

modeling for VRUs could enhance detection and tracking performance. 

• Environmental factors:Detection performance often degrades signifcantly under 

challenging conditions such as poor lighting, sun glare, or extreme obstructions. These 

conditions are particularly problematic for VRU detection due to their smaller size and 

variable appearance. Developing robust algorithms that can maintain high performance 

across a wide range of environmental conditions is crucial for reliable VRU detection in 

real-world scenarios. 

The widening performance gap between vehicles and VRUs at more stringent distance thresholds 

highlights the challenge of precise localization for smaller, more dynamic objects. This underscores 

the need for improved detection algorithms and training strategies specifcally tailored to enhance 

the accuracy of VRU detection in autonomous driving systems. Addressing these challenges 

is crucial for improving pedestrian safety and advancing the overall capabilities of autonomous 

vehicles. This chapter explores approaches to improve VRU detection, with a focus on collaborative 

perception techniques that aim to mitigate these limitations and improve pedestrian safety in 

autonomous driving scenarios. 
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2.1.2 VRU-Specifc Detector Vs Generic Detector 

In order to study the need for training algorithms tailored to pedestrians, cyclists, and 

motorcyclists, we used DeepAccident dataset [5] to compare the baseline model trained with six 

classes to a VRU-specifc specifc detector. The baseline DeepAccident model has car, truck, van, 

cyclist, motorcyclist, and pedestrian classes. A comparison is made with a VRU-specifc model 

trained with 3 classes, namely pedestrian, cyclist, and motorcyclist. 

DeepAccident DeepAccident [5] is introduced for end-to-end motion and accident prediction 

tasks on the autonomous vehicle side, along with various perception tasks in V2X 

(vehicle-to-everything). It contains a dataset recorded from four vehicles and one infrastructure 

each with six cameras at the intersection. In our experiment, we used samples with VRU classes 

Figure 2.2: Performance of model trained on only three VRU classes versus generic DeepAccident 

[5] baseline model trained on six classes 

(pedestrians, motorcyclists, and cyclists) to compare the performance of a model specifcally trained 

with VRU classes with the performance of a generic baseline model trained with six classes, namely 

car, truck, van, cyclist, motorcyclist, and pedestrian. 

Figure 2.2 demonstrates the performance improvement gained by training a VRU-specifc 

model. The model trained with pedestrians, cyclists, and motorcyclists outperformed the baseline 

model in AP@{0.5,1,2,4} meters for all three classes, suggesting the need to design VRU specifc 

detectors. It also shows that there is a performance diference between the three classes. This can 

be attributed to the class imbalance problems in the dataset, as the number of pedestrian instances 

is greater than that of motorcyclists and cyclists. 

To address this gap, we investigate a computer vision approach that enhances pedestrian 

detection through camera-only collaborative perception. This involves using synchronized cameras 

in both vehicles and infrastructure to cooperatively detect pedestrians at intersections. Due to 

the unavailability of annotated real-world datasets collected in a collaborative setup, we generate 

synchronized vehicle and infrastructure-side video using the high-fdelity CARLA simulator. This 

synthetic dataset is then used to train and evaluate deep learning algorithms for pedestrian 

detection in a collaborative setting. Our preliminary results demonstrate the potential of CP 

to signifcantly improve pedestrian detection. Our main contributions include the following: 

• We frst discuss in detail the concept of collaborative perception and review related works in 

mailto:AP@{0.5,1,2,4


6 2.2. TOWARD COLLABORATIVE PERCEPTION 

detail 

• Creating a synchronized dataset from both vehicle and infrastructure perspectives, 

specifcally tailored for pedestrian detection under normal and challenging conditions 

• Developing a vision-only collaborative perception technique focused on pedestrian detection 

2.2 Toward Collaborative Perception 

Collaborative perception has emerged as a vital component in improving vehicle safety 

and navigation. This paradigm uses collective sensory input from surrounding vehicles and road 

infrastructure to create a comprehensive understanding of the environment, mitigating limitations 

such as limited feld of view and occlusion. Collaborative perception can be camera-only [6], 

LiDAR-only [7, 8], or involve fusion of processed image and LiDAR point cloud features. In 

terms of data sharing and collaboration stage, collaborative perception in autonomous vehicles 

can be categorized into early fusion, intermediate fusion, and late fusion. Collaborative perception 

has become an important option for in improving vehicle safety and navigation. This paradigm 

leverages the collective sensory input of multiple agents, such as vehicles and infrastructure, 

through vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-everything (V2X) 

communications, fostering a more comprehensive understanding of the driving environment by 

improving the capabilities of individual agents by mitigating limitations such as limited feld of 

view and occlusion. There are three types of CP, early fusion, intermediate fusion, and late fusion, 

based on the data sharing and fusion stage [9]. Fig 2.3 illustrates the three collaborative stages. 

2.2.1 Fusion Types 

• Early Fusion: Early fusion involves the exchange of raw-level data, such as images or LiDAR 

point clouds. This method requires higher communication bandwidth due to the transmission 

of unprocessed raw data. While it potentially ofers better performance by allowing each 

agent access to the most complete information, it comes with signifcant drawbacks. The 

high bandwidth requirement can be a limiting factor in real-world applications. Additionally, 

this approach necessitates substantial processing capability at all agents to handle the raw 

data, which may not always be feasible or cost-efective. 

• Late Fusion: Late fusion involves transmitting the fnal perception outputs, such as 

detection bounding boxes. This approach requires less bandwidth than early fusion, making 

it more efcient in terms of data transmission. However, it may lead to processing and 

transmission delays, as the data is processed by each agent before sharing individual agent’s 

perception outputs. While late fusion is bandwidth-efcient, it has its own set of challenges. 

The transmission delay can be critical in time-sensitive applications, and the need for 

processing capability at all agents remains a consideration. 

• Intermediate Fusion: Intermediate fusion represents a balance between early and 

late fusion methods. Each agent processes the raw data into intermediate features 

and then compresses them before transmitting. This approach aims to strike a better 

performance-bandwidth trade-of. By exchanging processed features rather than raw data 

or fnal outputs, intermediate fusion can potentially ofer a good compromise between the 

high performance of early fusion and the bandwidth efciency of late fusion. This method 

allows for more fexibility in managing the balance between data transmission and processing 

requirements. 
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Figure 2.3: Schematic representation of the three fusion types in collaborative perception [10]: 

(a) Early collaboration, where raw data is shared directly; (b) Intermediate collaboration, where 

features extracted from raw data are shared; and (c) Late collaboration, where only fnal results 

are shared among agents. 

2.3 Related Work 

2.3.1 Pedestrian Detection 

Accurately detecting vulnerable road users (VRUs), such as pedestrians, cyclists, and 

motorcyclists continues to be a signifcant challenge for autonomous vehicles (AVs). While 

the main focus is detecting road vehicles, pedestrians are the most explored among the 

VRU classes. Works on VRU perception involve a pure camera-based approach, fusing from 

multiple sources and diferent V2X-based data exchanges between the VRUs and the vehicles, 

showcasing a range of approaches from communication technologies to machine learning and 

computer vision. 

In [11], a computer vision-based system is proposed for recognizing VRU hand signals, using 

CNN for enhanced detection accuracy. [12] introduced machine learning-based movement 

models for predicting VRU behavior, demonstrating improved trajectory prediction [13] 

developed a deep generative model for detecting interactions between vehicles and VRUs 

at intersections, using a conditional variational auto-encoder. [14] conducted an extensive 

study on the parameters afecting VRU detection in ADAS, highlighting the complexity 

of VRU appearances and behaviors. The PROSPECT project [15] proposed a method 

to improve active VRU safety systems by integrating various data sources and developing 

advanced sensor processing and intervention strategies. [16] emphasized the importance of 

simulation software in the development of VRU detection systems, combining radar and 

vision sensing for efective pedestrian and cyclist detection. [17] introduced an approach 

using mobile phones for vehicle-to-VRU communication, enhancing the detection and safety 

of VRUs. [18] proposed a multi-sensing and communication approach, leveraging smart city 

sensors and vehicle and VRU data for predicting potential collisions. [19] evaluated the 

performance of V2X communications technologies in enhancing VRU safety, particularly in 

urban intersection scenarios.[20] discussed the efectiveness of messaging protocols in V2X 

communication for VRU protection, emphasizing the combination of sensor data sharing and 

active VRU transmissions. 



8 2.3. RELATED WORK 

2.3.2 Collaborative Perception 

Collaborative perception has emerged as a vital component for enhancing vehicle safety and 

navigation. This paradigm leverages the collective sensory input from multiple agents, such 

as vehicles (V2V), vehicle to infrastructure (V2I), and vehicle-to-everything (V2X), to create 

a comprehensive understanding of the environment by improving the capabilities of individual 

agents by mitigating limitations such as limited feld of view and occlusion. 

The majority of studies focus on using one type of sensor for collaboration. Methods like 

Robust V2V [21], V2VNet [22] and Adversial V2V [23] use point cloud input for detection, 

prediction, and planning tasks of autonomous vehicle via intermediate (feature-level) 

collaboration. DiscoNet [10] uses a mix of early and intermediate collaboration with 

collaborative graph representation. Other LiDAR-only collaborative perception works 

include AttFuse [24] which introduced attention-based intermediate V2V collaboration, 

In similar work, V2X-ViT [25] introduced vision-transformer-based collaboration, while 

SyncNet [26] studied latency-aware collaboration in addition to attention-based fusion. Other 

research such as Where2comm [27] focused on reducing communication bandwidth needs 

without afecting performance. Coopernaut [28] explores end-to-end driving via cooperative 

perception. MPDA [29], and DI-V2X [30] delved into collaboration with unidentical agents. 

CoAlign [21] introduced a collaborative scheme robust to unknown pose errors, [31], DUSA 

[32] explores sim2real adaptation in cooperative perception. CO3 [33] studied unsupervised 

contrastive learning for vehicle-infrastructure point cloud features collaboration. UMC 

[34] focuses on multi-resolution collaborative learning. SCOPE [35], CORE [36], FFNet 

[37], CoBEVFlow [38], FF-Tracking [39], and AR2VP [40] contribute to detection and 

segmentation tasks focusing on vehicles’ navigation. While almost all previously listed works 

focus only on vehicles, AdaFusion [31] gives focus to pedestrian detection as well. 

To further improve perception performance in cooperative settings, recent multi-modal 

intermediate-level fusion approaches explored LiDAR-camera fusion for each agent. CoBEVT 

[41] and CoBEVFusion [42] demonstrated that bird’s-eye view fusion can signifcantly 

improve segmentation and detection tasks in a cooperative setting, HM-ViT [43] introduced 

graph transformer for lidar-camera fusion and between agent’s interaction, LAV [44] used 

multi-modal sensor reading for perception and planning in CARLA driving challenge. Due 

to the high cost of LiDAR and the ability of the camera-based approach to mimic human-like 

perception, recent work focuses on camera-only collaborative perception. QUEST [45], 

CoCa3D [46], V2XFormer [5] use camera-only collaboration. In other application, When2com 

[47] for collaborative robotic learning from aerial RGB image. 

Datasets and simulators have been equally crucial in propelling research in this domain. 

Emphasis is being given to diverse and high-quality synthetic data generated on CARLA 

and real cooperative datasets as well to advance this specifc feld. They provide the realistic 

scenarios and benchmarks required to train and evaluate collaborative perception models. 

V2X-Sim [48], DeepAccident [5] and DAIR-V2X [49] are noteworthy contributions, ofering 

a large-scale setting for vehicle-infrastructure cooperative 3D object detection. Similarly, 

OPV2V has become a standard benchmark for assessing the performance of LiDAR-based 

multi-agent perception systems enabling researchers to simulate and evaluate complex V2X 

interactions. 

Within the scope of current collaborative perception research, both datasets and algorithms 

predominantly concentrate on vehicle-related tasks such as detection, tracking, and motion 
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forecasting. However, this focus has inadvertently resulted in less robust perception 

capabilities for other road users, including pedestrians, cyclists, and motorcyclists. 

Addressing this disparity is important for a more comprehensive and safer understanding 

of the road environment. 

2.3.3 Perception Uncertainty 

Estimating perception uncertainty is critical for AV perception. The estimated uncertainty 

is used to measure robustness under challenging conditions, fuse perception from multiple 

sensors (lidar, camera, radar, etc) [50], [51], [52] as well as to exchange perception results 

from multiple agents. [50] introduced a method that combines multi-source perception 

fusion and deep ensemble for real-time evaluation in autonomous vehicles. This approach 

assesses the efectiveness of single-frame perception results and spatial uncertainty of detected 

objects. Similarly, [51] presented Uncertainty-Encoded Mixture-of-Experts (UMoE) for 

LiDAR-camera fusion, which uses MC dropout to efectively incorporate single-modal 

uncertainties into multi-modal fusion, enhancing object detection under various challenging 

conditions. Additionally, [53] addresses the domain drift problem in autonomous driving with 

a domain adaptive object detection algorithm based on feature uncertainty. Their approach, 

which includes a local alignment module and an instance-level alignment module guided 

by feature uncertainty, shows improved detection performance in unlabeled data. These 

methods show the purpose of perception uncertainty in autonomous driving, in tackling key 

challenges of multi-modal fusion, robust detection, and domain adaptation, and paving the 

way for more reliable and accurate autonomous driving systems. 

2.4 Proposed Approach 

This section outlines our methodology for generating a comprehensive dataset using the 

CARLA simulator and employing it for collaborative pedestrian detection. We frst describe 

the dataset generation process, detailing the simulation setup and data collection techniques. 

Following this, we introduce the collaborative perception method, emphasizing the per-agent 

detection unit and the subsequent fusion of detection results from multiple agents to enhance 

accuracy and robustness in complex urban scenarios. 

2.4.1 Dataset Generation 

An annotated, synchronized vehicle and infrastructure side dataset that covers a wide range 

of scenarios involving pedestrians is currently not available. Thus, a multi-camera and 

multi-agent dataset that focuses on pedestrians is generated using the high-fdelity CARLA 

[54] simulator. 

CARLA. CARLA (Car Learning to Act) is an open-source simulator for autonomous 

driving research. It provides a high-fdelity virtual environment built on the Unreal Engine, 

ofering realistic urban settings with various weather conditions, vehicles, and pedestrians. 

CARLA, as illustrated in Figure 2.4 allows for the generation of synchronized multi-agent 

data, including multiple camera views from both vehicles and infrastructure, LiDAR point 

clouds, depth maps, semantic segmentation, instance segmentation, and bounding boxes for 
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objects. The simulator can be controlled via Python scripts, enabling customized scenario 

creation and data collection. This fexibility makes CARLA ideal for generating diverse data 

sets tailored to specifc research needs, such as collaborative perception scenarios geared 

toward pedestrians. 

Figure 2.4: CARLA simulator setup for collaborative perception dataset generation. The simulator 

provides a realistic urban environment, while Python scripts control scenario generation. Various 

sensor outputs and annotated results are collected, including RGB images, depth maps, semantic 

segmentation, and bounding boxes. 

Agent and sensor setup. Figure 2.5 illustrates an example of how vehicles and 

infrastructure units with cameras mounted on them are placed at the intersection. Each 

vehicle and infrastructure unit is equipped with six cameras working at 20 fps frame rate. 

Each camera has a feld of view (FOV) of 70◦ , except for the back camera, which has an FOV 

of 110◦ , following the nuScenes [3] data collection framework. Each image is tagged with 

timestamp and saved at a 10Hz interval rate. The dataset covers diferent scenarios such 

as occlusions and non-line-of-sight situations, crowded pedestrian scenes, diverse weather 

conditions and diferent times of the day (noon, sunset, etc.), and varying speeds and profles 

of pedestrians. 

2.4.2 Camera Only Collaborative Pereption Method 

Per Agent Detection Unit 

We adopt V2XFormer [5] as birds eye view (BEV)-based 3D detection method for single-agent 

detection. It involves processing each image sequence with the image view encoder and 

transforming it into BEV features in each agent. Then, the BEV feature is fed to the 

detection head, which results in bounding box candidates and a spatial heatmap that serves 

as detection confdence. 
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Figure 2.5: Dataset generation setup and sample images. Left: Bird’s-eye views 

of intersections showing infrastructure (green) and vehicle (blue) agents, each equipped with 

six cameras. Right: Four sample images showcasing diverse scenarios: rainy conditions 

(top-left), nighttime scene (top-right), sun-glare efect (bottom-left), and sunny daytime trafc 

(bottom-right). Blue bounding boxes indicate pedestrians. These images demonstrate challenging 

scenarios including occlusions, varying lighting conditions, and complex urban environments, 

crucial for training robust collaborative perception models. 

Figure 2.6: Multi-frame image processing pipeline for 3D object detection for each agent, 

based on [5]. The workfow includes image-view encoding, view transformation, and ego-motion 

compensation across multiple time frames (t, t-1, ..., t-N+1) for N past frames. A spatio-temporal 

BEV encoder processes these inputs to generate BEV features. The decoder then produces a 

confdence map and 3D bounding boxes. 

Image Encoding 

Given a sequence of T frames from agents N , each equipped with six cameras, every 

frame from each camera is encoded into a rich and dense representation of features F , 
′ ′ ′ ′ ′ ′ ×W ×CF ∈ RH , where H ,W , C are the height, width, and channel of the characteristic 

of the image. 

Image Features to BEV Transform 

Each image feature of T frames is discretized into a pseudo-density point cloud. Then, the 

temporal data is encoded, and past features are warped to the current reference frame using a 

spatiotemporal encoder that extracts spatial and temporal information using 3D convolution, 

resulting in aligned BEV features for each agent. 
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Detection & Confdence Estimation Head 

The detection head consists of convolutional blocks that generate unfltered 3D bounding 

boxes. Additionally, it includes a learnable heatmap prediction block that outputs a Gaussian 

heatmap representing the detection confdence. The heatmap is created with a Gaussian 

kernel of radius r and standard deviation σ with the peak at the center of the bounding box. 

This allows a fne-grained understanding of the detection performance across diferent spatial 

regions and fusion based on that. 

Figure 2.7: Collaborative perception for pedestrian detection. Each agent captures 

sequences of images that are encoded into image features from the six cameras. These features are 

subsequently converted into Birds-Eye-View (BEV) representations. The BEV features are fed into 

a 3D detection head that estimates per agent 3D bounding box detection (Det.) and detection 

confdence (Conf.) as shown in 2.6 which is then transformed with transformation matrix [R, t] 

into the main unit for cooperative prediction. 

2.4.3 Vehicle-Infrastructure Collaborative Detection 

The detection results from multiple agents (vehicles and infrastructure) are fused based on 

confdence estimates in the Gaussian heatmap. Each agent produces a confdence heatmap 

and a list of 3D bounding boxes that are not fltered with Non-maximum Suppression (NMS). 

After the confdence map and candidates for the bounding boxes of each agent are transformed 

into the main cooperative unit, the fnal bounding box is obtained by choosing the result 

from the agent with the highest spatial confdence for that bounding box. This fusion process 

is guided by confdence levels, ensuring that more reliable detections have a greater infuence 

on the combined detection output. 

2.5 Numerical Experiments 

Collaborative perception setup: Each frame has a resolution of 1600x900 which is resized 

to 224x224 and fed to the image backbone, resulting in a spatial dimension of 704x256. The 

image features are then transformed into a BEV feature transformation of grid size 1024x1024, 

corresponding to an actual ground area of 102.4x102.4 meters around the agent. We frst 

train a single agent detection baseline and then study the impact of adding collaborative 

agents. 
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2.5.1 Preliminary Results and Discussions 

Figure 2.8 illustrates the average precision (AP) calculated for pedestrian detection in a 

collaborative setting and compares it with the performance of a single agent. The single agent 

vehicle or infrastructure side AP is calculated as the average over all six agents’ detection 

results. For collaborative setup, using infrastructure as the main unit, we gradually add 

one agent at a time and record the AP. Performance has steadily improved as the number 

of collaborative agents increases going from AP of 0.34 for the single agent case to 0.51 

when all the agents participate in the fusion process. This preliminary result suggests that 

a collaborative vehicle-infrastructure system, where vehicles and infrastructure share their 

perception results, can considerably improve pedestrian detection performance. 

Figure 2.8: Collaborative perception performance. Average Precision (AP) improves as the number 

of collaborating agents increases. Starting from a single agent or average of vehicle-only or 

infrastructure-only (AP = 0.34), performance improves with vehicle-infrastructure collaboration 

(AP = 0.41), reaching the best performance when all 6 agents (4 vehicles and 2 infrastructure 

units) collaborate (AP = 0.51). V and I represent vehicle and infrastructure, respectively 

2.6 Conclusion 

This chapter presented a camera only collaborative perception approach to pedestrian 

detection. We generated a synthetic dataset using the CARLA simulator, designed for 

collaborative perception scenarios mainly involving pedestrians. This dataset aims to address 

the current lack of annotated, synchronized vehicle and infrastructure data for pedestrian 

detection in a collaborative perception set-up. We then proposed a camera-only collaborative 

perception method that utilizes these multi-agent data. Our preliminary experiments 

indicated an improvement in Average Precision (AP) when using collaborative perception 

compared to single-agent detection. While these initial results are promising, further research 

is needed to fully validate the approach. This work represents a step towards enhancing 

pedestrian detection in autonomous driving systems, potentially contributing to improved 

safety for vulnerable road users in urban environments. 



Chapter 3 
Impact of Communication Limitations on Collaborative 
Perception 

3.1 Introduction 

As discussed in Chapter 2, the use of vehicle-to-everything (V2X) communications for 

sensor data exchange is emerging as a crucial strategy for enhancing pedestrian safety. 

Collaborative perception (CP) transcends single-vehicle perception systems, enabling a 

collective approach through V2X communication technologies. By leveraging connected 

and autonomous vehicles (CAVs) and smart infrastructure, CP aims to create an expansive 

and integrated sensory network, facilitating the exchange of complementary perception data 

among vehicles, infrastructure, and other entities within the trafc ecosystem. This allows the 

construction of a more comprehensive and dynamic representation of the trafc environment, 

thereby enhancing the decision-making capabilities of autonomous systems. 

CP involves a complex multi-agent1 fusion2 process, which introduces several practical 

challenges. For instance, communication latency and interruptions can signifcantly impact 

perception performance, necessitating strategies to mitigate the efects of time delays. 

Efciency in collaborative perception is crucial, as the system must manage data exchanges 

within bandwidth constraints without compromising the integrity and utility of shared 

information. Moreover, collaborative systems are susceptible to adversarial attacks, requiring 

robust defenses to ensure data reliability. Accurate alignment of data from multiple sensors is 

also critical for maintaining CP performance, which can be afected by location errors between 

collaborating agents. Additionally, integrating perception models from diferent vehicles 

presents unique challenges, demanding advanced fusion techniques to manage discrepancies 

and maintain overall system performance. Addressing these challenges requires a multifaceted 

approach to ensure the seamless integration of collaborative perception into operational 

systems. Consequently, managing communication limitations such as latency, bandwidth 

constraints, collaborative agents’ location errors, and communication interruptions is 

becoming increasingly critical. Most CP methods operate under the assumption of ideal 

communication conditions, focusing primarily on improving perception performance. Despite 

extensive research in CP, the impact of communication limitations has not been fully 

explored. Figure 3.1 illustrates the efects of latency and communication interruptions 

on LiDAR-based detection, underscoring the need to study the impact of communication 

limitations on CP. This chapter examines the efects of latency, communication interruptions, 

1”Agent” refers to a vehicle or infrastructure unit with sensing and connection capabilities. 
2”Collaboration” and ”multi-agent fusion” are used interchangeably. 
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Figure 3.1: Impact of communication limitations on collaborative detection. (a) Ideal 

communication with all agents; (b) Presence of delayed collaborative agents (by 400 ms), resulting 

in false/misaligned detections; (c) Presence of communication interruptions, leading to more missed 

detections compared to (a). 

and bandwidth constraints on collaborative detection performance using a state-of-the-art 

CP model. To study these impacts, we conduct the followings: 

– An investigation of how diferent levels of latency infuence the performance of 

LiDAR-based collaborative detection. 

– An analysis of the impact of various compression levels during data transmission on 

collaborative perception systems. 

– An evaluation of the efects of random communication interruptions on collaborative 

detection results. 

– A proposed method to mitigate latency and communication interruption using a 

lightweight spatio-temporal feature prediction model. 

The remainder of this chapter is structured as follows: We begin with a brief introduction 

to CP, followed by a detailed review of existing literature on CP systems. We then describe 

the graph-based CP framework used to assess the impact of communication limitations. 

Subsequently, we discuss the results of our experiments and conclude by summarizing our 

fndings and outlining considerations for future work in this domain. 

3.2 Related Work in Non-ideal Collaborative Perception 

Most collaborative perception (CP) methods discussed in Chapter 2, Section 2.3.2 assume 

ideal communication scenarios. Some recent work has begun to address the challenges posed 

by non-ideal conditions in real-world applications. These studies investigate how factors 

such as latency, bandwidth limitations, pose errors, and the gap between simulated and real 

environments can signifcantly impact the performance of CP systems. 

In studying latency-aware collaboration, SyncNet [26] has made notable contributions. This 

work not only studied the efects of communication delays but also integrated attention-based 

fusion and temporal alignment techniques to mitigate these issues. Similarly, Where2comm 

[27] tackled the critical challenge of bandwidth limitations in CP systems. Their approach 
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focused on reducing communication bandwidth requirements without compromising the 

overall performance of the collaborative perception system. 

Addressing the challenge of pose errors in CP, RobustV2V [21] proposed a collaborative 

scheme designed to be robust against unknown sensor location errors. This work is 

particularly signifcant as accurate pose information is crucial for efective collaboration 

between multiple agents. In an another work, V2X-ViT [25] introduced a vision 

transformer-based collaboration method capable of handling both ideal and noisy localization 

scenarios, further enhancing the robustness of CP systems in real-world conditions. 

The gap between simulated and real environments, a persistent challenge in autonomous 

driving research, has been addressed by DUSA [32]. This work explored sim2real adaptation 

techniques in the context of cooperative perception, aiming to improve the transferability 

of models trained in simulated environments to real-world scenarios. Additionally, 

CO3 [33] contributed to this area by studying unsupervised contrastive learning for 

vehicle-infrastructure point cloud feature collaboration, potentially ofering a way to reduce 

the reliance on large amounts of labeled real-world data. 

Some researchers have also explored CP in the context of heterogeneous agent networks. 

MPDA [29] and DI-V2X [30] investigated collaboration strategies for non-identical agents, 

addressing the reality that diferent vehicles and infrastructure elements may have varying 

sensing and processing capabilities. These works contribute to making CP systems more 

adaptable and robust in diverse real-world settings. Lastly, Coopernaut [28] took a holistic 

approach by exploring end-to-end driving via cooperative perception. This work potentially 

bridges the gap between perception and control in autonomous driving systems, considering 

the challenges of non-ideal conditions throughout the entire driving pipeline. 

Although recent studies have advanced collaborative perception (CP) in non-ideal conditions, 

a signifcant gap remains between theoretical progress and real-world applications. Many 

current CP eforts assume ideal communication scenarios, overlooking crucial limitations 

in autonomous driving environments. Our study addresses this gap by systematically 

investigating the impact of communication challenges on CP performance. Specifcally, 

we examine the efects of varying latency levels, data compression ratios, and random 

communication interruptions on LiDAR-based collaborative detection. To mitigate 

these issues, we propose a lightweight spatio-temporal feature prediction model. This 

comprehensive approach bridges the gap between theoretical advancements and practical 

implementations, contributing to the development of more robust and reliable CP systems 

for real-world autonomous driving scenarios. 

3.3 Collaborative Perception Framework 

In this section, we cover the CP framework used to study the impact of communication 

limitations. In this work, we adopt the state-of-the-art open-source LiDAR-based CP 

method named coperception with DiscoNet [10]. This method uses a student-teacher 

knowledge distillation model in which the teacher uses raw-level fusion and the student uses a 

graph-based feature-level collaborative method as shown in Figure 3.2. The following sections 

discuss the chosen method and the components that are used to simulate the communication 

limitations. 



17 3.3. COLLABORATIVE PERCEPTION FRAMEWORK 

3.3.1 Early Fusion During Training 

Early collaboration provides the upper bound of performance due to the aggregation of raw 

LiDAR data from all collaborating agents. As shown in Figure 3.2, the teacher model uses 

early collaboration that allows for a comprehensive view of the driving environment. This 

enables the use of combined data from all agents with the aim of minimizing performance 

degradation due to issues such as occlusion and perception limitations faced by individual 

agents. The teacher model processes these aggregated data to guide the learning process in 

a student model during the inference phase. This model acts as a guide to force the student 

model to improve CP performance. 

The teacher model employs a feature encoder-decoder and output header that are used only 

during training. For the feature encoding process, the system receives an aggregated 3D 

point cloud (Xa) from all participating agents {X1, ..., Xk}, merging their collected data 

points within a global coordinate framework. To align the global point cloud X to each 

agent’s reference frame, it is transformed to match the individual coordinate system of 

the agents, ensuring that the teacher and student models process data within a consistent 

coordinate system. In the decoding stage, the teacher model feature map is transformed 

through the feature decoder to produce a bird’s-eye-view (BEV)-based feature map. This 

map then passes through the output header, producing category classifcations and bounding 

box regressions. The training follows the conventional teacher-student methodology, where 

it is trained independently using binary cross-entropy for category classifcation and smooth 

L1 loss for bounding box regression. 

The overall loss is a summation of individual loss functions, representing the combined 

classifcation and regression errors for each agent’s detected ground truth within their 

perception feld. 

3.3.2 Graph-Based Intermediate Fusion 

Intermediate collaboration is collaboration that focuses on the exchange of intermediate 

features, rather than raw data or fnal perception output. This method strikes a balance 

between bandwidth-heavy early collaboration and potentially noisy late collaboration. 

Therefore, the student model employs an intermediate-level fusion. Based on [10], a 

graph-based intermediate collaboration is used to model interactions and data exchange 

between agents, as illustrated in Figure 3.2. In this graph-based collaboration, the nodes 

represent an agent, and the edges represent matrix-valued features that are exchanged 

between the collaboration agents. The strength of collaboration is encoded in these edges, 

which is learned during training. The collaboration graph facilitates the aggregation of 

features from diferent agents, allowing for a more nuanced and efcient fusion of information. 

This process is designed to adaptively learn the specifc contributions of each agent to the 

overall perception task. 

Similar to the teacher model, the student model also includes feature encoding-decoding 

stages and taskhead. Here, each agent i processes the 3D point cloud input Xi with its 

feature encoder. The encoder transforms the 3D point cloud into a bird’s-eye-view (BEV) 

map suitable for 2D convolution operations. This BEV map, a 2D representation of the 3D 

point cloud, undergoes a series of convolutional, batch normalization, and ReLU activation 

operations to refne and enrich the feature data. The feature maps are then compressed 
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prior to transmission. The collaboration graph allows feature map updates through agent 

interactions. The collaboration graph process consists of transmission, where agents exchange 

compressed feature maps and attention network, where each agent computes attention 

weights to assess the importance of received feature maps; and aggregation, where agents 

update their own feature maps by integrating received features based on the attention. 

Through this intermediate collaboration, agents can share compressed, yet informative, 

feature maps, reducing the required communication bandwidth while still enhancing the 

collective perception capability. The efect of bandwidth requirement versus performance is 

studied by adjusting the compression level of the matrix-valued weights of the edges on the 

graph. The graph also allows for random communication interruption by removing randomly 

chosen edges from the graph and studying the impact. To study the efect of latency, a frame 

delay is introduced in the transmission of features from one agent to another. 

Following the collaboration process, each agent uses a decoder to refne the updated BEV 

feature map. This refnement involves upsampling the feature map through a series of layers, 

each enhancing the details by merging with corresponding features from earlier stages and 

reducing channel dimensions via convolution. Subsequently, an output header processes this 

enhanced map to produce the fnal detection results, identifying object categories and their 

bounding boxes through convolutional pathways. This structured approach ensures that 

each agent can accurately interpret and respond to the collective data gathered during the 

collaboration. 

Figure 3.2: Collaborative perception framework. A LiDAR-based collaborative perception 

approach utilizing a student-teacher knowledge distillation model [10]. Here, the teacher model 

employs raw-level fusion, while the student model adopts a graph-based feature-level collaboration 

method. The collaborative graph is further illustrated in Figure 3.3. 

3.3.3 Feature Compression 

To study the impact of the size of the information that is being exchanged, each collaborative 

agent has the ability to compress its feature map (F i) before transmission to reduce thes 

bandwidth requirement. As in most previous works, a 1×1 convolutional flter is used to 
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Figure 3.3: Collaborative and communication graph. Each node, {1, 2, 3, 4, 5} represents one 

collaborative agent. Each edge Fi−>j is the transmitted feature from agent i to agent j when i 

is diferent from j and its own extracted feature if i = j. Using this collaborative graph, diferent 

levels of latency, communication interruption, and compression are simulated. 

compress the channel dimension. Hence, Bi = Compress(F i), where Bi is compressed feature s 

map of the ith agent, which is subsequently transmitted to other agents. 

3.3.4 Communication Interruption 

Communication interruption is a critical factor that can signifcantly afect the performance 

of collaborative perception systems. Using the collaboration graph G(V, E) shown in Figure 

3.3, where V represents the agents and E the communication links between them, we 

introduce random interruptions in the communication links between agents to simulate the 

unreliability of real-world networks. To simulate communication interruptions, we randomly 

disable certain edges E between pairs of agents from all possible pairs (i, j), where each pair 

represents direct communication between two agents. This method allows us to examine 

the impact of network interruptions on the system’s ability to collaboratively perceive the 

environment. By altering the number of disrupted edges E in various tests, we can test how 

efectively the CP system can operate amidst realistic communication interruptions. 
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Figure 3.4: Spatio-temporal prediction module for handling latency and communication 

interruption – Historical features undergo sequential 2D convolution to extract spatial features, 

followed by LSTM layers to capture temporal dynamics and then passed through a fully 

connected layer, which ensures accurate feature recovery, compensating for any data loss due 

to communication limitations. 

3.3.5 Latency 

Latency signifcantly infuences the performance of collaborative perception systems. In our 

model, we incorporate latency directly into the communication graph to assess its impact on 

data exchange between agents. Each edge (i, j) ∈ E is associated with a latency τij , which 

represents the delay encountered in the transmission of information from agent i to agent j. 

In doing so, we can analyze the impact of various latency scenarios on the overall efectiveness 

of the CP system, evaluating how well the system can maintain detection accuracy when there 

is a delay. 

3.3.6 Recovery using spatio-temporal prediction module 

Under ideal conditions, the aggregate feature at node i at time t, denoted Ft
a , is computed 

by fusing features from node j to node i, where j is an element of the set K containing all 

collaborating nodes. i.e. 

j→iF a 
t = ϕfuse({F }) for i, j ∈ K (3.1)t 

Communication interruptions and latency occur when node j is unable to send or sends 
j→idelayed features to node i, rendering the data Ft unusable at time t. In this case, the 

missing information is estimated from the historical feature information through the missing 

information recovery process. 

j→i j→i j→i j→iF̂  
t = predict(F , F(t−T +1), . . . , F ) (3.2)(t−T ) (t−1) 

Where F̂  
j
t 
→i denotes the recovered feature at node i coming from node j at time t, using the 

spatio-temporal prediction module based on the features from the previous T timesteps. 

This process predicts the current state of the features from accumulated past T historical 

information. Figure 3.4 illustrates the architecture used for spatio-temporal feature 

prediction. Historical features Ft−T , . . . , Ft−1 are input to a series of 2D convolutional layers 

to frst extract spatial patterns in the feature space. Then, the sequence of fattened features 

is processed through LSTM layers. The output from the fnal LSTM layer, denoted as yT , is 

passed to a fully connected (FC) layer, which maps it to the recovered feature space. 
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3.4 Experiments 

3.4.1 Dataset 

V2X-Sim [48]. V2X-Sim is a synthetic dataset designed for collaborative perception in 

autonomous driving in V2X scenarios. It is generated with CARLA and SUMO co-simulation 

to simulate realistic scenarios [54]. It includes 100 scenes, each lasting 20 seconds with 

recordings at 5Hz. Each scene includes 100 frames. The dataset provides synchronized 

sensor data from multiple vehicles and one road-side unit (RSU) with a maximum of fve 

collaborating vehicles per scene. Each agent records LiDAR points with annotation for 

detection, tracking, and segmentation tasks. 

Dataset split. We used the V2X-Sim version 2.0 split which comprises 10,000 

synchronized total frames, divided into 8,000 for training, and 1,000 each for validation 

and testing. In total, the dataset contains 37,200 training samples and 5,000 samples each 

for validation and testing. 

3.4.2 Benchmark models studied 

We studied the impact of communication limitations on early, intermediate, and late fusion 

models with the single agent model as a baseline. 

Single-agent : This baseline model processes point-cloud data independently for each agent 

without any collaborative inputs. 

When2com [47] : This technique introduces an attention-based system to determine the 

formation of communication groups and when to communicate it with focus on minimizing 

bandwidth usage while maximizing the perception performance. 

V2VNet [22] : V2VNet uses a convolutional neural network to generate and transmit 

Figure 3.5: Impact of latency on collaborative detection, showcasing the detection 

performance for fve agents under varying latency conditions. 

compressed intermediate representations of LiDAR data, which are then fused using a 
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spatially-aware graph neural network. 

DiscoNet [10] : This method constructs a directed collaboration graph with matrix-valued 

weights on the edges, which extracts useful spatial areas using a knowledge distillation 

learning mechanism. During inference, only the small student model is used for prediction. 

Late Fusion: In this approach, the fnal results of individual agents are combined and shared 

with each other. 

3.4.3 Metrics 

We quantify the detection performance using the mean average precision at a given 

intersection over the union (IoU) threshold. For instance, for a 0.7 IoU threshold, 

1 
NX 

mAP@IoU=0.7 = 
N 

APi@(IoU = 0.7) (3.3) 
i=1 

Where APi@(IoU = 0.7) represents the average precision for the i-th class among a total of 

N classes. The IoU threshold of 0.7 means that for a detection to be considered true positive, 

the overlap between the predicted bounding box and the ground truth bounding box must 

be at least 70%. 

3.4.4 Results and Discussions 

Impact of latency 

Figure 3.5 shows the mAP@IoU=0.7 scores for fve distinct agents on detection performance 

for diferent latency scenarios, ranging from the ideal case with no delay to a maximum 

of four frames of delay, τij = {1, 2, 3, 4}. A single frame delay represents 200 ms. There 

is an immediate and signifcant decrease in performance after a delay of one frame. As 

latency increases, a further, albeit smaller, decrease in performance is observed. This trend 

culminates in the lowest performance at a four-frame delay, indicating that increased delays 

disrupt collaborative detection capabilities. 

Impact of communication interruption 

The impact of communication interruption is illustrated in Figure 3.6. As the number of 

agents experiencing communication interruptions increases, the corresponding mAP decreases 

for each of the fve agents. 

This suggests that the efectiveness of the CP system is notably sensitive to interruption in the 

collaboration graph. All agents show a steep decline in mAP even with a single interruption, 

highlighting its dependence on uninterrupted data fow. The detection performance gets 

worse when a second agent is disconnected from the graph. 

Efect of compression 

Figure 3.7 illustrates the impact of data compression on the performance of agents in a 

collaborative detection system. Increasing compression from 2x to 16x leads to a clear 

decrease in mAP, with some agents such as Agent 4 and Agent 5 being more adversely afected 

than others. This highlights a trade-of between compression for efcient communication 

mailto:mAP@IoU=0.7
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Figure 3.6: Communication interruption efect on collaborative perception. Comparison 

of the performance of agents operating without interruptions where one or two agents are not part 

of the collaborative group. The columns represent per agent detection as the levels of interruptions 

increases. 

Table 3.1: Performance Comparison between single-agent baseline and collaborative methods under 

interruption (Inter.) and latency (Lat.) 

mAP@IoU=0.50 mAP@IoU=0.70 

Single Agent 0.47 0.42 

Fusion Type Ideal Inter. Lat. Ideal Inter. Lat. 

Late Fusion 0.58 0.43 0.39 0.54 0.39 0.34 

When2com [47] 0.48 0.31 0.40 0.41 0.25 0.35 

V2VNet [22] 0.72 0.51 0.64 0.65 0.47 0.56 

DiscoNet [10] 0.73 0.37 0.65 0.66 0.35 0.56 

DiscoNet + STP - 0.67 - 0.61 

and perception fdelity, emphasizing the need for careful calibration of compression levels in 

collaborative perception tasks. 

Table 3.1 presents the performance of diferent collaborative methods under ideal 

communication conditions, 400ms latency, and communication interruption of two agents. 

Under ideal conditions, all collaborative methods outperform the single-agent baseline, with 

early fusion achieving the highest mAP values. However, the introduction of latency and 

communication interruptions causes notable performance degradation across all methods. 

The spatiotemporal prediction method with DiscoNet [10] (DiscoNet + STP) demonstrates 

resilience, maintaining higher mAP values compared to other approaches in both latency and 

interruption scenarios, highlighting its robustness in non-ideal communication environments. 
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Figure 3.7: Collaborative perception under diferent compression level: mAP @IoU = 0.7 

for fve diferent agents under varying levels of feature compression. The compression levels 

evaluated include no compression (ideal scenario), 2x, 4x, and 16x compression, showing the 

trade-of between feature size and detection performance. 

Qualitative discussion 

In Figure 4.2, we present a qualitative evaluation of latency and communication interruption 

on collaborative detection performance. 

Ideal communication. For comparison, Figure 8(a) shows the ideal communication 

scenario. In this case, the agents exchange uninterrupted and synchronized perception results, 

allowing for accurate detection and minimal false or missed detections. The predicted boxes 

align well with the ground-truth boxes, indicative of a high-confdence consensus among the 

agents. This scenario is used as a reference to compare the impact of latency and interruption. 

Latency. Figure 4.2(b) shows the performance of the method when there is a delay in 

collaboration between agents. Latency leads to an increase in false positives where agents 

incorrectly identify objects based on outdated information and negative detections, where 

current objects are missed due to the absence of timely data exchange indicating that 

timely data sharing is critical for maintaining system performance. In addition, there is a 

misalignment in detection as agents are unable to accurately reconcile the temporal disparity. 

Interruption The efect of communication interruption is shown in Figure 4.2(c). There 

are more missed detections compared to the ideal-case scenario shown in Figures 4.2(a) 

and even 4.2(b) with latency, as the lack of data exchange yields a considerable increase in 

missed detections, and agents are unable to compensate for the information void. However, 

communication interruption shows fewer false detections compared to fusion with latency in 

as 4.2(b), implying that the absence of information can be less detrimental than inaccurate 

information in certain contexts. 
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Figure 3.8: Visualization of the efects of latency and communication interruptions on 

detection. Blue and red boxes represent ground truth and predictions, respectively. Diferent rows 

represent diferent scenes. (a) displays results with uninterrupted and delay free communication 

between agents; (b) demonstrates the detection degradation due to latency; (c) highlights the 

impact of communication interruption; and (d) presents the detection recovery through the 

spatio-temporal prediction network. 

Information recovery via prediction 

Figure 4.2(d) demonstrates the beneft of handling latency and interruption using 

spatio-temporal prediction method. The recovery process helped align the detections that are 

misaligned due to latency. In addition, storing historical frames and adding the prediction 

module during interruption enabled partially recovering some of the missed detection 

indicated by green dashed ellipses. The recovered detections highlight the module’s ability in 

utilizing historical and contextual data to ensure reliability and robustness in collaborative 

detection systems, compensating for temporal and spatial data loss caused by communication 

impacts. 

3.5 CONCLUSION 

This chapter has examined collaborative perception systems in the context of communication 

challenges, focusing on the efects of latency, communication interruption, and bandwidth 

limitations. Our numerical experiments, conducted using the V2X-Sim dataset, reveal 

signifcant performance degradation under non-ideal conditions: latency of 200ms (one 
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frame delay) caused a signifcant decrease in mAP, while communication interruptions led 

to a steep decline in performance even with a single agent disconnected. Compression for 

saving bandwidth shows a clear trade-of between communication efciency and detection 

accuracy, with 16x compression signifcantly reducing mAP. The proposed spatio-temporal 

prediction (STP) method demonstrates resilience, achieving an mAP of 0.67 and 0.61 at 

IoU thresholds of 0.5 and 0.7 respectively under non-ideal conditions, outperforming other 

methods including DiscoNet (0.65 and 0.56) and V2VNet (0.64 and 0.56). These results 

underscore the critical need for robust and adaptive algorithms in collaborative perception 

systems that can maintain performance under varying real-world communication conditions. 

Future work should focus on further improving the resilience of the system to communication 

challenges and validating these approaches in diverse real-world scenarios, particularly for 

applications that involve vulnerable road users. 



Chapter 4 
Vision Language Model For Pedestrian Trajectory 
Estimation 

4.1 Introduction 

Accurate prediction of pedestrian trajectories is crucial for pedestrian safety. As autonomous 

vehicles become more prevalent, the ability to anticipate and respond to pedestrian 

movements has become a critical challenge in ensuring the safety of pedestrians. Pedestrian 

trajectory prediction presents inherent complexities stemming from the dynamic nature 

of urban environments and the diverse, often unpredictable behavior of pedestrians. The 

task requires interpreting subtle visual cues and contextual information while meeting the 

demands of real-time processing in safety-critical situations. These factors collectively 

contribute to the challenge of developing accurate and reliable prediction models for 

autonomous driving systems. 

Earlier pedestrian trajectory prediction methods have relied on recurrent neural networks 

(RNNs) [55] and long-short-term memory (LSTM) networks [56] to process temporal data 

for this task. These approaches have shown promise in capturing sequential patterns in 

pedestrian movements. However, they often struggle to fully incorporate the rich visual 

and contextual information present in real-world scenarios. More recent methods have 

explored the use of advanced architectures to use both the context from the video frames 

and ego-vehicle attributes. For instance, [57] proposed a future person localization method 

for frst-person videos, [58] developed an egocentric vision-based future vehicle localization 

system for intelligent driving assistance. These approaches have made signifcant strides 

in improving prediction accuracy, but still face challenges in integrating diverse sources of 

information and reasoning about complex scenarios. 

Recent advances in vision language models (VLMs) ofer new possibilities to improve the 

accuracy, interpretability, and robustness of pedestrian trajectory prediction. VLMs excel in 

joint visual-textual understanding, providing rich pre-trained representations and enhanced 

context interpretation through multi-modal reasoning. To leverage these advantages, we 

propose a vision language reasoning approach on the Pedestrian Intention Estimation (PIE) 

[59] benchmark. This novel approach, dubbed PieVLM (Pedestrian Intention and trajectory 

Estimation using Vision Language Model), harnesses the power of VLMs for pedestrian 

trajectory estimation. PieVLM aims to address current limitations in the following ways: 

– Utilize VLMs’ capability to process complex visual and semantic information jointly 

– Incorporate textual descriptions and annotations seamlessly into the prediction process 

27 
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– Enhance context understanding through multi-modal reasoning 

– Ofer more interpretable predictions through natural language explanations 

– Improve the overall accuracy and robustness of pedestrian trajectory estimation 

This chapter introduces the PieVLM architecture and demonstrates its potential to enhance 

pedestrian safety in autonomous driving scenarios. 

4.2 PieVLM: Vision Language Model for Pedestrian 

Trajectory Prediction 

PieVLM leverages vision language models (VLMs) for enhanced pedestrian trajectory 

prediction through two main techniques. The frst employs a two-stage approach: 

pre-training with visual-linguistic supervision followed by fne-tuning for trajectory 

prediction, enabling rich contextual understanding. The second explores end-to-end 

prediction by framing the task as image-text to text, directly utilizing VLMs’ 

language modeling capabilities. These methods aim to improve prediction accuracy 

and interpretability in autonomous driving scenarios by integrating advanced language 

understanding with spatial reasoning. 

4.2.1 Pre-training followed by Task-specifc Finetuning 

The pre-training approach leverages Paligemma [60], a large-scale vision-language model, for 

pedestrian trajectory prediction through a two-stage process. Paligemma, which combines 

the SigLIP [61] vision encoder and the Gemma-2B [62] language model, is designed to handle 

a variety of tasks through a simple image-text in, text out approach. We begin by further 

pretraining the Paligemma on a dataset of scenes with pedestrians as illustrated in the upper 

part of Figure 4.1. This pretraining stage utilizes image-text pairs where the text describes the 

pedestrian’s location, actions, and other attributes, enhancing Paligemma’s understanding 

of pedestrian behavior in urban contexts. Following this, we fne-tune the pre-trained model 

specifcally for trajectory prediction. 

During fne-tuning, we provide sequences of images and corresponding text descriptions as 

input, training the model to generate accurate trajectory predictions as output after the 

features are processed using temporal model. This two-stage process allows us to adapt 

Paligemma’s powerful vision-language capabilities to the specifc task of pedestrian trajectory 

prediction, potentially improving both accuracy and interpretability of the predictions in 

complex urban environments. 

4.2.2 End-to-end Trajectory Prediction With VLM 

For the end-to-end PieVLM, we adopt Florence-2 [63], a powerful vision-language model that 

advances unifed representations across vision and language tasks. Florence-2 is designed to 

handle a variety of tasks through a prompt-based sequence-to-sequence framework, with 

robust pre-trained features leveraging a vast dataset of 5.4 billion visual annotations for 

pre-training. This approach frames pedestrian trajectory prediction as a text-to-text task, 

leveraging the model’s ability to process and integrate both visual and textual inputs. The 
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Figure 4.1: Two stage PieVLM architecture for pedestrian trajectory prediction. The upper 

section illustrates the pre-training phase, where image-text pairs are processed to learn pedestrian 

attributes and contexts. The lower section shows the fne-tuning stage, integrating pre-trained 

features with a temporal module to predict trajectories. 

input to the model consists of two primary components that provide a rich, multimodal 

representation of the scene and pedestrian behavior. 

The frst component is a structured textual prompt that encapsulates detailed information 

about the scene and pedestrian status. This prompt begins with a frame identifer, such as 

“<PIE PREDICT> Frame 1:”, followed by the pedestrian’s current location encoded as a 

series of coordinates, for example, “<loc 656><loc 681><loc 670><loc 766>”. The prompt 

also includes critical contextual information such as the pedestrian’s occlusion status (e.g., 

“is full occluded from ego vehicle view”), relevant trafc elements like trafc light locations 

and states (e.g., “ <loc 531><loc 591><loc 539><loc 618> Type: regular State: green”), 

and additional frames of pedestrian location data to capture temporal dynamics. 

The second input component is an image frame that provides the visual context of the scene. 

This image is processed through a Vision Encoder, which extracts relevant visual features 

that complement the textual information. The image typically shows the pedestrian and 

their immediate surroundings, ofering visual cues that may infuence trajectory prediction. 

Florence-2 processes these inputs through several sophisticated stages. Initially, the textual 

prompt undergoes tokenization and embedding, transforming the structured text into a 

format the model can efciently process. Concurrently, the Vision Encoder converts the input 

image frame into a rich set of visual features. The model then combines these multimodal 

inputs – the embedded text and visual features – leveraging its deep architecture to interpret 

the complex relationships between textual descriptions and visual cues. 
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Figure 4.2: End-to-End PieVLM architecture for pedestrian trajectory prediction. The system 

integrates structured text prompts (top left) containing spatial and contextual information 

with image frames (bottom left). These inputs are processed through a vision-language model 

comprising a tokenizer, embedding layer, and vision encoder which are then concatenated. The 

model then generates predictions of future pedestrian trajectories (right), after the fusion of textual 

and visual features. 

The output of this end-to-end process is generated in a structured text format, predicting 

the “Pedestrian Future Trajectory” across multiple frames. Each frame in the prediction 

includes the expected future location coordinates of the pedestrian, formatted similarly to 

the input (e.g., “<loc 714><loc 668><loc 730><loc 777>”). This format allows for precise 

spatial predictions while maintaining the text-to-text paradigm. 

By framing trajectory prediction in this manner, PieVLM can directly map from rich, 

multimodal inputs to detailed trajectory predictions. This approach potentially captures 

intricate relationships between visual elements, textual descriptions of the scene, and future 

pedestrian movements that might be challenging to model using traditional computer 

vision techniques alone. The end-to-end nature of this method, combined with the 

powerful Florence-2 architecture, ofers a novel and potentially more nuanced approach to 

understanding and predicting pedestrian movements in complex urban environments. 

4.3 Numerical Experiments 

4.3.1 Datasets 

For this study, the Pedestrian Intention Estimation (PIE) dataset [59] is used. The PIE 

dataset contains over 6 hours of egocentric driving videos, comprising 911k frames from six 

urban locations. It features annotations for 300k frames, including 2.1 million bounding boxes 

for 1,842 unique pedestrian samples, as well as annotations for vehicles, trafc lights, and 

signs. Each frame provides detailed spatial, temporal, and behavioral information, including 
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pedestrian actions, attributes, and occlusion levels. The dataset also includes synchronized 

ego-vehicle movement data and pedestrian intention probability annotations, ranging from 0 

to 1, enhancing its utility for predictive modeling in autonomous driving applications. 

4.3.2 Metrics 

We present the results for a 0.5-second past observation period and a 1-second future 

prediction, corresponding to 15 past frames and 30 future frames at a rate of 30 frames 

per second. The trajectory prediction metrics, all reported in pixels, are as follows: 

– Average Displacement Error (ADE): The average Euclidean distance between 

predicted and ground truth centers over all prediction time steps. 

T 

T 
t=1 

Xq 
(xp g p g− x )2 + (y − y )2 

t t t t (4.1) 
1 

ADE = 

where (xp, yp) is the predicted center position of the bounding box containing thet t 

pedestrian and (xg , yg) is the ground truth center position at time step t, and T ist t 

the total number of prediction time steps. 

– Final Displacement Error (FDE): The Euclidean distance between the predicted 

fnal center position and the ground truth fnal center position. 

q 
p g p gF DE = (x − x )2 + (y − y )2 (4.2)T T T T 

where T is the fnal prediction time step. 

– Average Rotated Bbox (ARB): The average RMSE of bounding box coordinates 

over all prediction time steps. 

vuut XXT 4 

T 4 
t=1 i=1 

1 1 p g p g− x )2 + (y − y )2]t,i t,i t,i t,i (4.3)ARB = [(x 

p p g gwhere (xt,i, y ) and (xt,i, y ) are the predicted and ground truth coordinates of thet,i t,i 

i-th corner of the bounding box at time step t, respectively. 

– Final Rotated Bbox (FRB): The RMSE of bounding box coordinates at the fnal 

prediction time step. 

vuut X4 

4 
i=1 

1 
[(xp g g g− x )2 + (y − y )2]T,i T,i T,i T,i (4.4)F RB = 

p p g gwhere (x ) and (x ) are the predicted and ground truth coordinates of theT,i, yT,i T,i, yT,i 

i-th corner of the bounding box at the fnal time step T , respectively. 

All metrics are computed based on pixel coordinates, with lower values indicating better 

performance. 
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4.4 Preliminary Results 

Initial experiments with PieVLM have shown promising results compared to baseline 

methods, although comprehensive evaluations are still ongoing. pre-training Using the 

followed by the fnetuining method (PieVLM-I) as indicated in Table 4.1 shows promising 

result in accurately predicting the pedestrian’s trajectory. The Florence-2 version 

(PieVLM-II) demonstrated an Average Displacement Error (ADE) of 15.42 pixels and Final 

Dislacement Error (FDE) of 35.84 pixels for trajectory prediction, suggesting competitive 

performance in estimating pedestrian movements as shown in Table 4.1. Although these 

initial results are encouraging, more metrics and more extensive evaluations are needed 

to fully assess the performance of PieVLM across various scenarios and compared to 

state-of-the-art methods. 

Table 4.1: Trajectory Prediction Results on PIE Dataset 

Method ADE FDE ARB FRB 

FOL [58] 

FPL [57] 

B-LSTM [56] 

PIEtraj [59] 

PIEf ull [59] 

BiPed [64] 

PedFormer [65] 

73.87 

56.66 

27.09 

21.82 

19.50 

15.21 

13.08 

164.53 

132.23 

66.74 

53.63 

45.27 

35.03 

30.35 

78.16 

-

37.41 

27.16 

24.40 

19.62 

15.27 

143.69 

-

75.87 

55.39 

49.09 

39.12 

32.79 

PieVLM-I 18.82 60.39 35.16 67.17 

PieVLM-II 15.42 35.84 21.11 47.21 

4.5 Conclusion and Future Work 

PieVLM represents a novel approach to pedestrian trajectory estimation by leveraging 

the power of vision language models. The use of pre-trained VLMs, combined with 

task-specifc fne-tuning and temporal modeling, shows promise in capturing complex visual 

and contextual information for more accurate predictions. The preliminary results suggest 

that this approach has the potential to advance the state of the art in pedestrian trajectory 

prediction. An end-to-end approach where visual-linguistic input and text output are used 

has also shown a promising result in improving pedestrian trajectory prediction. 

Here’s the revised version with the dataset link as a hyperlink: 



PUBLICATION AND PRODUCT 

Paper: Shenkut, D. Vijaya Kumar, B.V.K. Impact of Latency and Bandwidth Limitations 

on the Safety Performance of Collaborative Perception (2024 IEEE International Conference 

on Computer Communications and Networks (ICCCN) ): URL Pending 

Dataset: CVIPS Dataset, check dataset section 

Code: https://github.com/cvips/cvips 
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